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a b s t r a c t 

The global health crisis caused by the coronavirus SARS-CoV-2 has highlighted the importance of effi- 

cient disease detection and control strategies for minimizing the number of infections and deaths in the 

population and halting the spread of the pandemic. Countries have shown different preparedness levels 

for promptly implementing disease detection strategies, via mass testing and isolation of identified cases, 

which led to a largely varying impact of the outbreak on the populations and health-care systems. In this 

paper, we propose a new pandemic resource allocation model for allocating limited disease detection and 

control resources, in particular testing capacities, in order to limit the spread of a pandemic. The pro- 

posed model is a novel epidemiological compartmental model formulated as a non-linear programming 

model that is suitable to address the inherent non-linearity of an infectious disease progression within 

the population. A number of novel features are implemented in the model to take into account impor- 

tant disease characteristics, such as asymptomatic infection and the distinct risk levels of infection within 

different segments of the population. Moreover, a method is proposed to estimate the vulnerability level 

of the different communities impacted by the pandemic and to explicitly consider equity in the resource 

allocation problem. The model is validated against real data for a case study of COVID-19 outbreak in 

France and our results provide various insights on the optimal testing intervention time and level, and 

the impact of the optimal allocation of testing resources on the spread of the disease among regions. The 

results confirm the significance of the proposed modeling framework for informing policymakers on the 

best preparedness strategies against future infectious disease outbreaks. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

During the early days of January 2020, it was reported that a 

umber of pneumonia cases, identified by the end of 2019 and, at 

he time, of an unknown aetiology, were, in fact, caused by a novel 

oronavirus later identified as SARS-CoV-2. In the months that fol- 

owed, this novel coronavirus, which caused the disease popularly 

nown as COVID-19, started to rapidly spread across the globe, re- 

ulting in an exponential increase in the number of infections and 

ospitalizations of severe cases. With hospitals in many countries 

eaching their maximum operational limits and with the rapidly 

ncreasing number of deaths caused by the virus, the World Health 
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rganization (WHO) declared the outbreak as a global pandemic. 

ince the first identified cases in January 2020, the number of con- 

rmed cases and deaths related to the COVID-19 disease have sur- 

assed 80 million and 1.7 million, respectively ( WHO et al., 2020 ). 

Early reports compared the progression of the SARS-CoV-2 virus 

mong several nations, including China, Italy, France and South 

orea, to name a few, showing how the difference in prepared- 

ess and control policies implemented, such as mass testing, lock- 

owns, contact tracing and case isolation seemed to be resulting 

n major differences in the rates of infected individuals, hospital- 

zations and deaths among those countries ( Hsiang et al., 2020 ). 

hese differences in early control policies are often the result of 

 variety of factors, including cultural, social, economic, political, 

mong others ( Yan, Zhang, Wu, Zhu, & Chen, 2020 ). However, a 

ajor contributor to the efficiency in implementing a successful 

ontrol measure is the degree of preparedness within the system 
ptimization model for planning testing and control strategies to 

nal of Operational Research, https://doi.org/10.1016/j.ejor.2021.10. 
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country/region) to deploy and allocate the proper resources in or- 

er to limit the spread of an infectious disease. A notable example 

s the preparedness level seen in the case of the Republic of Korea. 

he Republic of Korea was successful in identifying a large num- 

er of cases very early on, as a result of implementing a massive 

esting strategy, reaching around 20,0 0 0 tests per day in less than 

 weeks since they identified the first case ( Sung et al., 2020 ). The

trategy was successful in significantly slowing down the spread 

f the disease without enforcing city-wide lock-downs or collapse 

f the national health-care system. In other cases, pandemic re- 

ponses have been criticized as resulting in high peaks of infec- 

ions and deaths during the early phase of the outbreak, particu- 

arly, due to the lack of identification of cases via mass testing and 

ontact tracing ( Moatti, 2020 ). 

Testing, case-isolation and control strategies have been shown 

o be effective measures to control the spread of infectious 

iseases, including the COVID-19 pandemic ( Aleta et al., 2020; 

adubueze, Dachollom, & Onwubuya, 2020; Wells et al., 2020 ). 

owever, with regards to the actual levels of preparedness for 

apidly implementing testing strategies and allocating testing ca- 

acities among different regions, policymakers face a number of 

lanning challenges. Testing resources may be naturally limited at 

he onset of the outbreak of a new disease as testing technolo- 

ies are still being developed. Other factors, such as distribution 

imes, test administration times and the number of trained staff

vailable to perform the procedure and interpret the results may 

lso contribute to limit the capability to effectively allocate mas- 

ive testing capacities. Furthermore, in the context of the COVID-19 

utbreak, the decisions for controlling the pandemic spread should 

ake into account disease specific attributes, among which, the dif- 

erence in severity of symptoms and risk factors within the popu- 

ation (for example elders and those with underlying health con- 

itions are more prone to develop severe symptoms compared to 

ounger and healthier individuals Jordan, Adab, & Cheng, 2020 ), 

he high rate of transmission of the disease among asymptomatic 

ndividuals ( Moghadas et al., 2020 ) and the impact of population 

obility between regions ( Guan et al., 2020 ) for work or study 

urposes and particularly from infected-asymptomatic individuals 

ho are harder to identify. Finally, a major challenge for policy- 

akers for allocating limited control resources among regions is 

o ensure an equitable distribution of these resources. Despite the 

act that there is little consensus about the meaning of equity, it 

s broadly accepted in public health that an equitable allocation 

f resources help to mitigate disparities and improve health out- 

omes among regions ( Braveman, 2006 ). An equitable public pre- 

aredness and management strategy does not solely depend on 

he character and severity of the disaster in and of itself, but also 

n the vulnerability of the particular communities impacted by it. 

hereas public health disasters such as the COVID-19 pandemic do 

ot, themselves, create the conditions of health access inequities 

n a population, they accentuate existing ones and make it so that 

ulnerable communities suffer the most ( Alberti, Lantz, & Wilkins, 

020 ). 

The aim of this paper is to provide an optimization modeling 

ramework to help policymakers optimally plan and evaluate deci- 

ions on allocating scarce disease detection and control resources 

n order to mitigate the spread of a pandemic. Since a pandemic 

rogression within a population is an inherently non-linear phe- 

omenon, the proposed model is an explicitly formulated non- 

inear optimization model that captures key disease transmission 

haracteristics and non-linear transition dynamics. In addition, the 

odeling framework proposed takes into account specific charac- 

eristics of the COVID-19 pandemic, most notably, the possibility 

f asymptomatic exposure and infection as well as the distinct 

isk levels of infection for different segments of the population. 

he spatio-temporal aspect of the decision making problem is fur- 
2 
her considered by accounting for population mobility between re- 

ions. Finally, the proposed modeling framework is extended to 

ccount for equity considerations for the exposed and vulnerable 

ommunities within the decision-making problem. The relevance 

f the modeling framework is validated with a real case study, 

rst, by validating the model predictions against real pandemic 

ontrol measures and the resulting disease transmission dynam- 

cs that occurred, and subsequently, by showing the significance 

f the results for a range of intervention policies. To the best of 

ur knowledge, this study is the first attempt to formulate and ad- 

ress the problem of allocating testing and control resources as a 

on-Linear Programming (NLP) model for controlling an infectious 

isease outbreak. 

. Literature review and paper contributions 

There is a large body of literature that deals with modeling in- 

ectious diseases within a decision making framework ( Dasaklis, 

appis, & Rachaniotis, 2012 ). One of the most prominent modeling 

pproaches that have proven its usefulness for modeling epidemics 

s the SIR compartmental model proposed by Kermack & McK- 

ndrick (1927) and its various extensions (see for example van den 

riessche, 2008 ). The basic SIR model separates the population in 

hree groups: susceptible individuals (S) who can get the disease, 

hose infected (I), and those removed from the population (R) due 

o recovery, death or immunity. In the majority of studies, these 

ompartmental models are used within a simulation or differential 

quation framework, primarily to predict the spread of the disease 

ithin the population ( He, Peng, & Sun, 2020; Iwata & Miyakoshi, 

020; Meltzer et al., 2014; Mwalili, Kimathi, Ojiambo, Gathungu, & 

bogo, 2020 ). 

Decision support for resource allocation in preparedness, mit- 

gation and control of infectious diseases is another important 

pplication domain for operation research and management sci- 

nce. However, similarly, the majority of the existing literature 

s based on simulation models or simulation-optimization frame- 

orks, which do not explore the full range of decisions and control 

olicies to guarantee that the optimal ones are selected ( Dimitrov 

 Meyers, 2010 ). 

Fewer studies considered compartmental models within math- 

matical optimization, such as linear, integer, non-linear, stochas- 

ic programming or optimal control for decision making in prepar- 

ng against and controlling infectious diseases. Sun, DePuy, & Evans 

2014) proposed linear optimization models for patient and re- 

ource allocation among hospitals in a health-care system dur- 

ng a pandemic influenza outbreak. Yarmand, Ivy, Denton, & Lloyd 

2014) proposed a two-stage stochastic linear program to optimally 

llocate vaccines within a two-phase vaccination policy to contain 

n epidemic. Rachaniotis, Dasaklis, & Pappis (2012) proposed a the- 

retical analysis to derive decision support insights on mass vacci- 

ation against AH1N1 influenza pandemic. Büyüktahtakın, des Bor- 

es, & Kıbış (2018) presented an epidemics-logistics mixed-integer 

inear optimization framework for determining optimal interven- 

ion strategies in terms of treatment capacities and location for 

ontrolling the Ebola epidemic. Their proposed model is interest- 

ng in that it combines a number of important features within 

he optimization framework, such as spatially varying rates for dis- 

ase transmission and the migration of population among regions, 

hich are also considered in this work together with a number 

f additional important improvements. More recently, Madubueze 

t al. (2020) studied the effect of different control strategies for the 

ase of the COVID-19 pandemic, in particular quarantine and iso- 

ation, as time-dependent interventions using an optimal control 

pproach. 

The particular problem of allocating limited testing capaci- 

ies and their impact on the dynamics of infectious disease is 
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Fig. 1. Proposed epidomological model framework including testing, hospitalization and quarantine measures. 
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ery rarely studied in the literature. Among the few studies we 

ere able to identify is the work of Omondi, Mbogo, & Luboobi 

2018) that develops a deterministic simulation model to provide 

 quantification of HIV prevention, testing and treatment in Kenya. 

ore recently, the work of Buhat, Duero, Felix, Rabajante, & Mam- 

lata (2020) explores the optimal allocation of COVID-19 test kits 

mong testing centers, but without considering an epidemiological 

odel within the optimization problem and, instead, using histori- 

al data as demand points for estimating the need for testing kits; 

his makes the model of limited usage for deciding on future allo- 

ation decisions. 

To the best of our knowledge, no existing study addresses the 

ptimization problem of multi-region multi-period allocation of 

esting capacity to prepare against and control the spread of a pan- 

emic. Our approach also differs in a number of ways from ex- 

sting epidemiological resource allocation problems, among which, 

he explicit modeling of asymptomatic exposure and infection, the 

eparation of distinct risk levels of infection for different segments 

f the population, and the consideration of an equity-based ob- 

ective function to derive the allocation decisions. Finally, the NLP 

odel developed maintains the inherent non-linearity in pandemic 

rogression dynamics, in particular with regards to the number of 

ew infections and the positivity-rate of testing. 

In summary, our research makes several distinct contributions 

o the literature: 

(i) The paper proposes a novel non-linear programming (NLP) 

model based on an adapted compartmental SIR model for 

the optimal allocation of testing and control resources in 

a multi-spatial multi-temporal setting with the objective of 

minimizing the new infections in the population, as well as 

the cases that die without receiving hospitalization. 

(ii) The paper proposes novel extensions of the SIR compart- 

mental model to take into account different levels of in- 

fection severity, asymptomatic transmission of the infec- 

tious disease, decisions related to testing symptomatic and 

asymptomatic individuals, case isolation modeling for con- 

firmed cases and decisions related to hospitalization for se- 

vere cases, all within a single optimization framework. 

(iii) The paper proposes a novel formulation that considers the 

allocation of testing to asymptomatic and symptomatic indi- 

viduals, and models the effect of positivity-rate of testing as 

a function of the ratio of the non-infected population to the 

total population. 

(iv) The paper considers an equity-driven objective function, 

based on the GINI index and weighed by the population 

vulnerability level, to generate equitable testing allocation 

plans. 
3 
(v) The proposed model is validated against real data for a case 

study of the COVID-19 outbreak in France, and the results 

are illustrated for a number of scenarios featuring realis- 

tic assumptions. The results provide insights on the impact 

of testing intervention time and level on the control of the 

pandemic. Moreover, the results confirm the usefulness of 

the proposed tool to help inform the policymakers on the 

level of preparedness needed in terms of testing capacity to 

control a large scale infectious-disease outbreak. 

. Pandemic progression and resource allocation model 

The proposed model describes the diffusion of the virus as a 

tate transition among 12 compartments in each physical location 

nd for each time period, as illustrated in Fig. 1 . In the Figure,

he nodes represent the states of the individuals in the popula- 

ion impacted by the SARS-CoV-2 virus and the arcs represent the 

ransition paths from one state to another, with the transition rate 

oted next to each arc. The state evolution of the population is ei- 

her disease-dependent/clinical (solid arcs) or decision-dependent 

dashed arcs). 

We divide the infected population into three groups according 

o the most prominent features found in the clinical literature re- 

ated to the COVID-19 disease: 

• Infected asymptomatic ( IA ): this group is carrying the disease 

in its incubation period. COVID-19 was reported to be capable 

to be transmitted even in the incubation period. Given that this 

group is not symptomatic, in the beginning of a pandemic out- 

break they are more likely to interact with other individuals 

without being noticed. They, therefore, have the highest disease 

transmission parameter as reported in the clinical literature. 
• Infected mildly symptomatic ( ISM ): disease carrying group that 

started showing mild symptoms. At the beginning of a disease 

outbreak, they may interact with other individuals (since no 

quarantine or particular measures has been taken yet), how- 

ever, they are also more likely to be identified and isolated 

since they are showing symptoms. The clinical literature, there- 

fore, reports a lower disease transmission parameter for this 

group. 
• Infected severely symptomatic ( ISS ): disease carrying group that 

are showing severe symptoms. This group is less likely to be 

interacting with individuals in the general population due to 

their severe cases. It is the group that requires intensive medi- 

cal care and attention. However, according to the clinical litera- 

ture of the COVID-19 disease, they can still transmit the disease 

to a small number of individuals they interact with, such fam- 

ily members, care takers, hospital workers, although the rate is 
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significantly reduced compared to disease carrying individuals 

in the general population. Therefore, the disease transmission 

parameter for this group is significantly lower but non-zero. 

Furthermore, the disease-dependent state progression is sepa- 

ated in two groups. The first group (grey) starts with the untested 

usceptible individuals ( NA ), who become infected with transmis- 

ion rates ( σ A 
x , σ

SM 

x , σ SS 
x ) through community interactions with dif- 

erent infected subgroups and move to the untested-infected popu- 

ation ( IA , ISM , ISS ), as a consequence of these interactions. Within 

he infected subgroups, individuals progress through several dis- 

ase severity states: from asymptomatic to mildly-symptomatic to 

everely-symptomatic ( IA → ISM → ISS ) with transition rates ( μx 

nd κx ), respectively. The same transitions occur within the second 

roup (red), which represents the same severity levels of infec- 

ion, but for tested and confirmed individuals who have been iden- 

ified and isolated ( ̃  IA , ˜ ISM , ˜ ISS ) and, therefore, can no longer infect 

thers. Infected individuals from both groups can, also, transition 

o recovery if they have mild symptoms ( ISM , ˜ ISM → to R ), with

ates ( ω 

A 
x ), or to death if they have severe symptoms ( ISS , ˜ ISS →

 ), with rates ( ξA 
x ). It is assumed in the proposed model that in-

ected asymptomatic individuals (IA) will show some symptoms af- 

er the incubation period. Therefore, they will either transition to 

SM or they will be isolated after being tested and transition to ˜ SM from which they can recover. Notice that a proportion of in- 

ected asymptomatic individuals may recover without being tested 

or showing any symptoms, but those individuals can not be iden- 

ified since they were neither tested nor showed any symptoms. 

n this case we equivalently identity them as non-infected indi- 

iduals, since, for modeling purposes, there is no way to quan- 

ify the proportion of these individuals without any clinical data. 

his should not impact the output of the model as the disease 

ransition parameters are, first, calibrated with real data to reflect 

he actual disease progression in the population as discussed in 

ection (6.1) . 

Finally, the decision-dependent state progression concerns the 

esting and hospitalization states. If available capacities exist, 

symptomatic and mildly-symptomatic individuals can get tested 

 T A and T S, respectively) and move to the respective identified 

tate. Similarly, based on available capacities, severely symptomatic 

ndividuals can either be accepted to hospitals ( H) or die without 

ospitalization. 

It should be noted that the proposed model considers a con- 

inuous relaxation of the integer state and decision variables for 

implification and to allow a tractable solution of the proposed 

odel. However, this is a common simplification in the literature 

or epidemiological simulation models based on differential equa- 

ions for state transition and which has confirmed that this re- 

axation of integrality maintains high quality results. The formula- 

ion of the proposed model is discussed in details in the following 

ection. 

.1. Model notations 

Sets and indices: 

j Index of time period. 

x \ y Indices of location. 

J Set of time periods. 

X Set of locations. 

Ny (x ) Set of surrounding locations to location x . 

� Set of connected locations. 

o

4 
Disease transition parameters: 

σ A 
x \ σ

SM 
x \ σ SS 

x Transmission rate of the disease due to 

community interaction with asymptomatic \ 
mildly symptomatic \ severely symptomatic 

individuals at location x . 

ω 

A 
x Transition rate of untested mildly symptomatic 

individuals who recover without hospitalization 

at location x . 

ω 

B 
x Transition rate of individuals who recover after 

being hospitalized at location x . 

μx Average time from infection to showing 

symptoms at location x . 

κx Transition rate from being mildly symptomatic to 

developing severe symptoms at location x . 

ξ A 
x Transition rate of severely symptomatic 

individuals who die without being hospitalized at 

location x . 

ξ B 
x Transition rate of severely symptomatic 

individuals who die after being hospitalized at 

location x . 

Various model parameters: 

V (x,y ) \ ρ(x,y ) Mobility rate of non-infected asymptomatic \ 
infected asymptomatic individuals between 

location x and surrounding locations y . 

B T \ B H Total available testing \ hospitalization capacities. 

T C 0 x Existing testing capacity at location x at the 

beginning of the planning horizon. 

T P x Total population at location x . 

HC x, j Total hospitalization capacity at location x time 

period j. 

IC * x Initial condition of variable ∗ at location x . 

ϑ x Normalized vulnerability score of location x . 

G GINI coefficient expressed as a weighed measure 

of absolute differences. 

State variables: 

NA x, j \ NS x, j Number of untested non-infected asymptomatic \ 
symptomatic individuals at location x at time j. 

IA x, j \ ISM x, j \ ISS x, j Number of untested infected asymptomatic \ 
mildly-symptomatic \ severely-symptomatic 

individuals at location x time j. ˜ IA x, j \ ˜ ISM x, j \ ˜ ISS x, j Number of tested infected asymptomatic \ 
mildly-symptomatic \ severely-symptomatic 

individuals at location x at time j. 

NA 
[ mob] 

(x,y ) , j \ IA 
[ mob] 

(x,y ) , j Number of non-infected \ infected asymptomatic 

individuals moving from location x to y at time j. 

H x, j \ R x, j \ D x, j Number of hospitalized \ recovered \ deceased 

individuals at location x at time j

T A x, j \ T S x, j Number of asymptomatic \ symptomatic 

individuals being tested at location x at time j. 

Decision variables: 

A 
[ TA ] 

x, j \ S 
[ T S] 

x, j Total Asymptomatic \ Symptomatic individuals 

both infected and non-infected accepted for 

testing at location x time period j. 

IA 
[ TA ] 

x, j \ ISM 

[ T S] 

x, j Number of Infected Asymptomatic \ Symptomatic 

individuals accepted for testing at location x time 

period j. 

ISS 
[ H] 

x, j \
˜ ISS 

[ H] 

x, j Number of untested \ tested and Infected Severely 

Symptomatic individuals accepted to be 

hospitalized at location x time period j. 

T C new 
x, j 

\ T C x, j New \ Total testing capacity allocated to location 

x time period j. 

.2. Formulation of the NLP optimization model for pandemic 

reparedness 

.2.1. Pandemic model objective function 

The optimization seeks to minimize ( Eq. (1) ): (i) the total num- 

er of newly infected individuals showing various severity levels of 

ymptoms (asymptomatic, mildly symptomatic and severely symp- 

omatic) and (ii) a penalty term representing the number of deaths 

f infected individuals who do not get hospital treatment, for all 
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ocations and over the whole time horizon: 

in 

∑ 

x ∈ X 

∑ 

j∈ J 

(
σ A 

x IA x, j + σ SM 

x ISM x, j + σ SS 
x ISS x, j 

)
·
(

NA x, j 

T P x 

)
+ 

∑ 

x ∈ X 

∑ 

j∈ J 
ξ A 

x ·
((

ISS x, j − ISS 
[ H] 

x, j 

)
+ 

(˜ ISS x, j − ˜ ISS 
[ H] 

x, j 

))
(1) 

he proposed objective function seeks to minimize the number of 

ewly infected individuals instead of the cumulative number of in- 

ected individuals in the population since we consider heteroge- 

eous infection levels that have different characteristics and dura- 

ion of illness. If the cumulative number of infectious is consid- 

red this would lead to longer disease duration phases having a 

arger weight in the objective function with a priority to be min- 

mized (for example priority to minimize the asymptomatic infec- 

ious phase if it lasts longer than severely symptomatic phase), 

hich is not the desired outcome of the optimization. We, there- 

ore, assume that the policymaker seeks to minimize the total 

umber of newly infected individuals in population regardless of 

ow long their symptoms will last. 

Furthermore, it should be noted that the penalty term is im- 

ortant to consider since, without setting the penalty of minimiz- 

ng the number of individuals who do not receive hospitalization, 

he mathematical programming model does not have a preference 

etween the last different removal states (recovery, death or hos- 

italization) as they all contribute to minimizing the number of 

nfected individuals in the population. The only relevant factor in 

his case becomes the values of the transition parameters which 

re not enough to guarantee a logical outcome of the model where 

he preference is for individuals to receive hospitalization rather 

han to be left to die if it is a faster transition out of the infected

opulation. 

Finally, as can be seen in Eq. (1) , the calculation of newly 

nfected individuals results in a non-linear term in the objec- 

ive function, that is a function of the disease transmission 

ates through the community interaction with infected individuals 

ithin the IA , ISM and ISS populations at the end of period j, and 

he ratio of the remainder susceptible population in the region. 

.2.2. Pandemic transmission dynamics 

Initial condition 

The set of constraints, grouped in Eq. (2) , define the initial con- 

itions for the number of individuals in each of the states at each 

ocation and at the first time period: 

A x, j = IC NA 
x , IA x, j = IC IA x , ISM x, j = IC ISM 

x , ISS x, j = IC ISS 
x 

 A x, j = IC TA 
x , T S x, j = IC T S x , 

˜ IA x, j = IC ̃  IA 
x , 

˜ ISM x, j = IC ̃  ISM 

x , ˜ ISS x, j = IC ̃  ISS
x 

 x, j = IC H x , R x, j = IC R x , D x, j = IC D x , ∀ x ∈ X, j = 1 (2) 

egional mobility constraints 

It is important to consider the movement of the population be- 

ween regions, as this impacts the disease transmission rates in the 

ifferent regions. In this work, it is reasonably assumed that only 

symptomatic individuals remain mobile between regions during a 

andemic outbreak and that symptomatic individuals are confined 

n their respective regions until recovered (or in the worst-case de- 

eased). It should be noted, however, that the asymptomatic pop- 

lation still contains infected individuals that may expose others 

o the disease and, therefore, may highly alter the infection rates 

etween the regions ( Moghadas et al., 2020 ). 

The mobility of the non-infected asymptomatic individuals is 

escribed in Eq. (3) as the product of the mobility ratio V from re- 

ion x to the connected regions y , and the number of non-infected 

symptomatic individuals at each region x and time j. Similarly, 

he mobility of the infected asymptomatic individuals is formu- 

ated as the product of the mobility ratio ρ from region x to con- 
5 
ected regions y , and the number of infected asymptomatic indi- 

iduals at each region x and time j, as shown in Eq. (4) : 

A 

[ mob] 

(x,y ) , j = V (x,y ) · NA x, j , ∀ j ∈ J, (x, y ) ∈ � (3) 

A 

[ mob] 

(x,y ) , j = ρ(x,y ) · IA x, j , ∀ j ∈ J, (x, y ) ∈ � (4) 

otice that this formulation allows the direct implementation of 

ifferent mobility policies, such as lock-downs, where mobility is 

estricted for some regions, by the proper setting of the mobility 

arameters (V and ρ) . It should be, also, noted that, in the pro- 

osed model, permanent population movement (immigration) be- 

ween regions is not considered. Only temporary mobility of pop- 

lation for work or study is considered as reported in the official 

egional mobility data. It is assumed, therefore, that those individ- 

als return back to their respective regions within the same day 

ith a net mobility per region per day equal to 0. This means that 

he total population of each region ( T P x ) remains constant over- 

ime, which is reasonable to consider for short to midterm plan- 

ing models. 

Susceptible individuals 

Constraint (5) defines the number of susceptible individuals 

non-infected asymptomatic NA individuals) at the end of period 

j + 1 to be equal to the number of susceptible individuals in the 

opulation in the previous period, plus the inwards-mobility to re- 

ion x , minus the outwards-mobility from region x to connected 

egions y , minus newly infected individuals who transition to the 

nfected state: 

A x, j+1 = NA x, j + 

∑ 

y ∈ Ny (x ) 

NA 
[ mob] 

(y,x ) , j −
∑ 

y ∈ Ny (x ) 

NA 
[ mob] 

(x,y ) , j 

−
(
σ A 

x IA x, j − σ SM 

x ISM x, j − σ SS 
x ISS x, j 

)
·
(

NA x, j 

T P x 

)
, ∀ x ∈ X, j ∈ J (5) 

nfectious individuals 

Constraint (6) describes the number of untested infected 

symptomatic individuals ( IA ) at the end of period j + 1 to be 

qual to the number of IA in the previous period, plus the inwards- 

obility from surrounding regions to location x of individuals with 

imilar state, minus the outwards-mobility from location x , minus 

A individuals accepted for testing ( IA 

[ TA ] 
), minus the proportion of 

he IA population that transitions to the mildly-symptomatic state 

ithout getting tested, plus newly infected individuals due to com- 

unity interactions, as described in Eq. (6) : 

A x, j+1 = IA x, j + 

∑ 

y ∈ Ny (x ) 

IA 
[ mob] 

(y,x ) , j −
∑ 

y ∈ Ny (x ) 

IA 
[ mob] 

(x,y ) , j − IA 
[ TA ] 

x, j − 1 

μx 

(
IA x, j − IA 

[ TA ] 

x, j 

)
+ 

(
σ A 

x IA x, j + σ SM 

x ISM x, j + σ SS 
x ISS x, j 

)
·
(

NA x, j 

T P x 

)
, ∀ x ∈ X, j ∈ J (6) 

It should be noted that, testing asymptomatic individuals, as is 

eflected in Eq. (6) , may be observed within a policy context such 

s contact tracing ( Braithwaite, Callender, Bullock, & Aldridge, 2020; 

acIntyre, 2020; Park et al., 2020 ) or other specific policy imple- 

ented by the policymaker, which might impact the disease trans- 

ission dynamics. 

Constraint (7) describes the number of untested infected mildly 

ymptomatic individuals ( ISM ) at the end of period j + 1 to be 

qual to the number of ISM in the previous period, plus the pro- 

ortion of the IA population that transitions to the ISM state, mi- 

us the number of ISM individuals that are accepted for testing, 

inus the remainder of the ISM population that did not get tested 

nd which either recovers (with transition rate ω 

A ) or develops se- 

ere symptoms (with transition rate κ): 

SM x, j+1 = ISM x, j + 

1 

μx 

(
IA x, j − IA 

[ TA ] 

x, j 

)
− ISM 

[ T S] 

x, j 

−
(
ω 

A 
x + κx 

)(
ISM x, j − ISM 

[ T S] 

x, j 

)
, ∀ x ∈ X, j ∈ J (7) 
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ymptomatic individuals are the primary candidates for testing and 

solation measures. However, as will be described in Section 3.4 , it 

s important to consider the positive rate of testing, since there ex- 

sts a possibility of testing individuals showing or reporting similar 

ymptoms and not actually having the disease. 

Constraint (8) describes the number of untested infected 

everely symptomatic individuals ( ISS ) at the end of period j + 1 , 

qual to the number of ISS in the previous period, plus the propor- 

ion of the ISM population that develops severe symptoms, minus 

he number of ISM individuals that are hospitalized ( ISS 
[ H] 

), minus 

he remainder of the ISS population that dies without being hospi- 

alized due to lack of hospitalization resources, with transition rate 
A : 

SS x, j+1 = ISS x, j + κx 

(
ISM x, j − ISM 

[ T S] 

x, j 

)
− ISS 

[ H] 

x, j 

− ξ A 
x 

(
ISS x, j − ISS 

[ H] 

x, j 

)
, ∀ x ∈ X, j ∈ J (8) 

otice that testing decisions for the symptomatic population do 

ot consider those individuals in the severely symptomatic state. 

his is because it is assumed that severely symptomatic individu- 

ls require specialized care (through hospitalization) regardless of 

hether they have been tested for the infectious disease, or not. 

Moreover, as can be seen in the proposed formulation, when 

nfected individuals are tested and isolated, hospitalized, recovered 

r deceased, they are removed from the infectious population, i.e., 

hey can no longer contribute to the disease transmission. This is 

onsidered in Constraints (6) –(8) by reducing the number of in- 

ected individuals in the different categories by the respective tran- 

ition proportion to one of those removed states. 

Infectious individuals (tested and confirmed) 

Regarding the tested population: constraint (9) describes the 

umber of tested infected asymptomatic individuals ( ̃  IA ) at the end 

f period j + 1 , to be equal to the number of ˜ IA in the previ-

us period, plus newly tested and confirmed individuals who were 

symptomatic ( T A x, j ) and minus the ˜ IA population that develops 

ild symptoms and transitions to the ˜ ISM state: 

˜ A x, j+1 = 

˜ IA x, j + T A x, j −
1 

μx ̃

 IA x, j , ∀ x ∈ X, j ∈ J (9) 

onstraint (10) describes the number of tested infected mildly 

ymptomatic individuals ( ̃  ISM ) at the end of period j + 1 , to be

qual to the number of ˜ ISM in the previous period, plus newly 

ested and confirmed individuals from the symptomatic popula- 

ion, plus the proportion of the ˜ IA population that develops mild 

ymptoms, minus the proportion of the ˜ ISM population that recov- 

rs (with transition rate ω 

A ), or develops severe symptoms (with 

ransition rate κ): 

˜ SM x, j+1 = 

˜ ISM x, j + T S x, j + 

1 

μx ̃

 IA x, j − κx ̃
 ISM x, j 

− ω 

A 
x ̃

 ISM x, j , ∀ x ∈ X, j ∈ J (10) 

onstraint (11) describes the number of tested infected severely 

ymptomatic individuals ( ̃  ISS ) at the end of period j + 1 , to be

qual to the number of ˜ ISS in the previous period, plus the propor- 

ion of the ˜ ISM population that develops severe symptoms, minus 

he number of ˜ ISM individuals that is accepted for hospitalization 

 ̃

 ISS 
[ H] 

), minus the remainder of the ˜ ISS population that dies with- 

ut being hospitalized due to the lack in hospitalization resources, 

ith transition rate ξA : 

˜ SS x, j+1 = 

˜ ISS x, j + κx ̃
 ISM x, j − ˜ ISS 

[ H] 

x, j − ξ A 
x 

(˜ ISS x, j − ˜ ISS 
[ H] 

x, j 

)
, ∀ x ∈ X, j ∈ J (11) 

esting 

Constraints (12) and (13) describe the number of individuals in 

esting states at j + 1 , equal to the number of individuals accepted
6 
or testing at the previous time period j, both for asymptomatic 

12) and symptomatic (13) cases: 

 A x, j+1 = IA 

[ TA ] 

x, j , ∀ x ∈ X, j ∈ J (12) 

 S x, j+1 = ISM 

[ T S] 

x, j , ∀ x ∈ X, j ∈ J (13) 

ospitalized 

Constraint (14) represents the total number of individuals hos- 

italized in location x at the end of period j + 1 , which is equal

o the total hospitalized in period j plus severely symptomatic in- 

ividuals (both untested and tested) accepted for hospitalization, 

inus the proportion of hospitalized individuals who recover (with 

ransition rate ω 

B ) or die (with transition rate ξ B ). 

 x, j+1 = H x, j + 

˜ ISS 
[ H] 

x, j + ISS 
[ H] 

x, j −
(
ω 

B 
x + ξ B 

x 

)
H x, j (14) 

ecovered 

Constraint (15) provides the cumulative number of individuals 

n location x who recover with or without being hospitalized. The 

otal number of recovered individuals at the end of period j + 1 

s equal to the sum of: (i) the recovered individuals in the previ- 

us period; (ii) the proportion of infected individuals who recover 

fter having showed mild symptoms but who did not get tested 

ω 

A 
x 

(
ISM x, j − ISM 

[ T S] 

x, j 

))
; (iii) the proportion of infected individuals 

ho recover after having showed mild symptoms and who have 

een tested 

(
ω 

A 
x ̃

 ISM x, j 

)
; and (iv) the proportion of infected indi- 

iduals who recover after having been hospitalized ( ω 

B 
x H x, j ). 

 x, j+1 = R x, j + ω 

A 
x 

(
ISM x, j − ISM 

[ T S] 

x, j 

)
+ ω 

A 
x ̃

 ISM x, j + ω 

B 
x H x, j , ∀ x ∈ X, j ∈ J (15) 

eceased 

Constraint (16) provides the cumulative number of individuals 

n location x who die with or without being hospitalized. The to- 

al number of deceased individuals at the end of period j + 1 is 

qual to the sum of: (i) the deceased individuals in the previous 

eriod; (ii) the proportion of individuals who die after being hos- 

italized 

(
ξ B 

x H x, j 

)
; (iii) the proportion of severely symptomatic in- 

ividuals who die without receiving hospitalization and who did 

ot get tested 

(
ξA 

x 

(
ISS x, j − ISS 

[ H] 

x, j 

))
; (iv) the proportion of severely 

ymptomatic individuals who die without receiving hospitalization 

nd who were tested and isolated 

(
ξA 

x 

(˜ ISS x, j − ˜ ISS 
[ H] 

x, j 

))
 x, j+1 = D x, j + ξ B 

x H x, j + ξ A 
x 

(
ISS x, j − ISS 

[ H] 

x, j 

)
+ ξ A 

x 

(˜ ISS x, j − ˜ ISS 
[ H] 

x, j 

)
, ∀ x ∈ X, j ∈ J (16) 

.3. Resources allocation constraints (testing and hospitalization) 

The resource allocation constraints that face the policymaker 

re presented in Eqs. (17) –(23) . Decisions regarding the spatial 

nd temporal management of limited testing and control as well 

s hospitalization resources, are simultaneously optimized within a 

ingle optimization model, under the conditions developed by the 

isease transmission dynamics defined by Eqs. (2) –(16) . 

Hospitalization limit 

Constraint (17) limits the total number of individuals hospital- 

zed to the number of available hospitalization capacity in location 

 at the end of period j. This is calculated as the minimum be- 

ween the remaining capacity available to accommodate new se- 

ere cases at time j in location x ( HC x, j − H x, j ) and the total num-

er of severely infected individuals requiring hospitalization ( ISS 



A.F. Abdin, Y.-P. Fang, A. Caunhye et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; November 25, 2021;11:20 ] 

a

I

C

l

H

t

e

r

a

a

i

e

I

C

t

T

A

a

t

T

a

i

v

∑

∑

A

3

t

l

w

r

b

t

a

i

a

o

p

t

t

a

t

A

A

I

S

I

a

t

c

p

w

a

t

a

(

b

r

n

(

i

P

4

o

O

G

t

w

t

w

m

a

j

&

m

T

m

nd 

˜ ISS ) if there is enough hospitalization resources: 

˜ SS 
[ H] 

x, j + ISS 
[ H] 

x, j ≤ min 

{˜ ISS x, j + ISS x, j , HC x, j − H x, j 

}
, ∀ x ∈ X, j ∈ J 

(17) 

onstraint (18) describes the maximum hospitalization capacity at 

ocation x in time period j: 

 x, j ≤ HC x, j , ∀ x ∈ X, j ∈ J (18) 

Testing limit 

Constraint (19) limits the total number of individuals tested 

o the number of available testing resources in location x at the 

nd of period j. This is calculated as the minimum between the 

emaining testing capacity available after accepting asymptomatic 

nd symptomatic individuals for testing ( T C x, j −
(
T A x, j + T S x, j 

)
) 

nd the total number of the asymptomatic and mildly symptomatic 

ndividuals ( IA + ISM ), that are candidates for testing if there is 

nough testing resources: 

A 
[ TA ] 

x, j + ISM 

[ T S] 

x, j ≤ min 
{

IA x, j + ISM x, j , T C x, j −
(
T A x, j + T S x, j 

)}
, ∀ x ∈ X, j ∈ J 

(19) 

onstraint (20) ensures that the total testing done does not exceed 

he available testing capacity: 

 A x, j + T S x, j ≤ T C x, j , ∀ x ∈ X, j ∈ J (20) 

llocation of testing capacity 

Constraint (21) determines the total cumulative testing capacity 

vailable in location x up to period j, including any available initial 

esting resources T C 0 : 

 C x, j = 

j ∑ 

τ= I start 

T C new 

x,τ + T C 0 x , ∀ x ∈ X, j ∈ J \ J̄ (21) 

Budget for allocating testing 

Constraints (22) and (23) limit the total testing resources avail- 

ble for distribution to the maximum level B T and ensure that test- 

ng capacities are available only at the start of the defined inter- 

ention date I start : 

 

x ∈ X 

J̄ ∑ 

j= I start 

T C new 

x, j ≤ B 

T (22) 

 

x ∈ X 

I start ∑ 

j=1 

T C new 

x, j = 0 (23) 

Non-negativity 

ll variables are continuous and non-negative, ∀ x ∈ X, j ∈ J 
(24) 

.4. Modeling the positivity-rate of testing 

Notice how, according to the mathematical model introduced 

hus far, the positivity-rate of the testing results is not considered, 

eading to an assumption that 100% of the total tested individuals 

ill be positive (i.e. identified as infected). This is, evidently, not 

ealistic: a high number of asymptomatic individuals who might 

e tested (because of contact tracing or other reasons) will not ac- 

ually have the disease and, therefore, their test results will be neg- 

tive. Similarly, a number of individuals showing symptoms might, 

n fact, have another illness and their test results may, therefore, 

lso be negative. This is what is referred to as the positivity-rate 

f testing and it should be properly taken into consideration in the 

roposed disease transmission and resource allocation model. 
7 
In order to consider the positivity-rate of testing, we introduce 

wo new variables A 

[ TA ] 

x, j and S 
[ T S] 

x, j that serve to compute the effec- 

ive number of infected asymptomatic and symptomatic individu- 

ls identified by testing, respectively. The following constraints are, 

herefore, added: 

 

[ TA ] 

x, j + S 
[ T S] 

x, j < = T C x, j , ∀ x ∈ X, j ∈ J (25a) 

 

[ TA ] 

x, j ≤ NA x, j + IA x, j , ∀ x ∈ X, j ∈ J (25b) 

A 

[ TA ] 

x, j = A 

[ TA ] 

x, j · IA x, j 

NA x, j + IA x, j 

, ∀ x ∈ X, j ∈ J (25c) 

 

[ T S] 

x, j ≤ NS x, j + ISM x, j , ∀ x ∈ X, j ∈ J (25d) 

SM 

[ T S] 

x, j = S 
[ T S] 

x, j · ISM x, j 

NS x, j + ISM x, j 

, ∀ x ∈ X, j ∈ J (25e) 

Eq. (25a) ensures that the number of tests conducted on 

symptomatic and symptomatic individuals is limited by the to- 

al available testing capacity. Eq. (25b) limits the number of tests 

onducted on asymptomatic individuals by the total asymptomatic 

opulation size. Eq. (25c) relates the total asymptomatic tests 

ith its resulting number of positive cases by the positivity rate 
IA x, j 

NA x, j + IA x, j 
, which is the fraction of infected asymptomatic individu- 

ls over the total asymptomatic population. Eq. (25d) enforces that 

he number of tests conducted on (mild) symptomatic individu- 

ls is limited by the total mild symptomatic population size. Eq. 

25e) relates the total symptomatic testings with its resulting num- 

er of positive cases by the positivity rate 
ISM x, j 

NS x, j + ISM x, j 
, where NS 

epresents the population that shows similar symptoms but that is 

ot infected by the specific disease. 

Finally, notice that, the objective function (1) and constraints 

5), (6), (25c) and (25e) are non-convex and nonlinear. The result- 

ng model described by Eqs. (1) –(25e) is, therefore, a Non-Linear 

rogram (NLP). 

. Generating equitable resource allocation plans 

For ease of discussion, let us define the previously formulated 

bjective function for each region and each time step (1) to be: 

 x, j = 

(
σ A 

x IA x, j + σ SM 

x ISM x, j + σ SS 
x ISS x, j 

)
·
(

NA x, j 

T P x 

)
+ ξ A 

x ·
((

ISS x, j − ISS 
[ H] 

x, j 

)
+ 

(˜ ISS x, j − ˜ ISS 
[ H] 

x, j 

))
, ∀ x ∈ X, j ∈ J 

(26) 

enerating equitable plans require adapting the objective function 

o consider an equity measure between the various regions among 

hich the resources are to be allocated. The measure O x, j is the to- 

al number of infected individuals that remain untested and those 

ho die without receiving hospitalization. We complement this 

easure with an equity measure G, the Gini coefficient, which is 

 popular measure of inequity. To formulate the equity-driven ob- 

ective function we follow the rationale developed in Eisenhandler 

 Tzur (2018) , wherein the objective function balances two funda- 

ental principles of public management, effectiveness and equity. 

o achieve this, the equity-based objective function is defined as: 

in 




∑ 

x ∈ X 

∑ 

j∈ J 
O x, j (1 + G) (27) 
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here the GINI index G is measuring the weighed absolute differ- 

nce in the allocation policy of two regions: 

 = 

∑ 

x ∈ X 
∑ 

x ′ ∈ X: x ′ >x 

∣∣ϑ x ′ 
∑ 

j∈ J O x, j − ϑ x 

∑ 

j∈ J O x ′ , j 

∣∣∑ 

x ∈ X 
∑ 

j∈ J O x, j 

, (28) 

nd the weight ϑ x reflects the importance of each individual re- 

ion, understood here as the vulnerability level of each region x . 

his leads to the following easily linearizable objective function: 

in 




{ ∑ 

x ∈ X 

∑ 

j∈ J 
O x, j + 

∑ 

x ∈ X 

∑ 

x ′ ∈ X: x ′ >x 

∣∣∣∣∣ϑ x ′ 
∑ 

j∈ J 
O x, j − ϑ x 

∑ 

j∈ J 
O x ′ , j 

∣∣∣∣∣
} 

(29) 

ϑ x can be calculated based on any number of vulnerability fac- 

ors associated with region x . These factors are typically related to 

hysical, social, economic, and/or environmental vulnerability in- 

icators. For example, factors such as unemployment rate, poverty 

evel or the proportion of physically vulnerable individuals in the 

opulation may be used to calculate the level ϑ x . However, socio- 

conomic criteria for allocating health-related resources may be 

ifficult to validate and may often lead to controversial outcomes. 

n this study, we propose to calculate a vulnerability score based 

n a vulnerability factor which is the number of available hospital 

eds per capita in the respected region ( Ministère des solidarités et 

e la santé, 2020a ). A discussion on the choice of this vulnerability 

actor and its validation can be found in Appendix B. 

The normalized vulnerability score for each region x , is calcu- 

ated as follows: 

 x = 

ηx / T P x ∑ 

x ∈ X ( ηx / T P x ) 
, ∀ x ∈ X (30) 

n which ( ηx ) is the selected vulnerability factor and ( T P x ) is the

opulation size of each region. 

. Case study 

The NLP optimization model for pandemic preparedness intro- 

uced in Section 3.2 is applied to the real case study of the COVID-

9 pandemic outbreak in France. To illustrate the usefulness of the 

odel on a real application for the allocation of limited testing and 

ontrol resources, a case study covering 3 interconnected regions 

n France is considered. Administratively, France is composed of 13 

etropolitan regions as well as 5 overseas regions. The case study 

onsiders 3 of the major metropolitan regions, namely: (i) Ile-de- 

rance (IdF): the most populous region and where the capital is lo- 

ated, (ii) Grand-Est (GE): one of the regions that were significantly 

mpacted by the early spread of the disease and, (iii) Centre-Val 

e Loire (CVdL): a region which borders the most with regions in 

etropolitan France and may, therefore, be considered as an im- 

ortant connecting hub for the different regions. The choice of the 

eographical level (regional, country level, cities, etc.), as well as 

he number of regions considered in the case study, is primarily 

ade to ensure the consistency of the data sources used as well 

s the clarity of evaluating and discussing the results obtained. The 

odel, as formulated, can straightforwardly accommodate different 

eographical levels and numbers of locations as needed. 

France is reportedly the first country in Europe where COVID- 

9 cases were imported ( ECDC, 2020 ). At the time of writing, the

umber of confirmed cases and the number of deaths related to 

he COVID-19 infection in France have reached levels higher than 

.5 million cases and 60 thousand deaths ( WHO et al., 2020 ). For

he case study, we focus our attention on leveraging the NLP model 

eveloped in this work to optimally allocate the available testing 

apacities among the different regions in France, with the objective 

f achieving the minimal number of new infections and of deaths 

f individuals who do not receive medical attention. 
8 
The data used for the numerical analysis includes disease 

ransition parameters ( Table 1 ), population and geographic data 

 Table 2 ) and data describing the mobility of population between 

egions collected on a departmental level and aggregated for each 

egion, as shown in Fig. 2 ( Table 3 ). The disease transition pa-

ameters are described in Table 1 and are calculated based on 

linical progression models (column 3) and generally known clin- 

cal values of the SARS-CoV-2 virus (column 4). These values are 

argely based on the sources cited in the Table. An exception to 

hat are the transmission rates from susceptible to infected indi- 

iduals ( σ ), which depend on location-specific attributes, such as 

he local policy implemented (confinement, travel bans, social dis- 

ancing or other measures), the behavior of the population with 

egards to those policies ( Rajaonah & Zio, 2020 ) as well as other 

ocal factors. These values, therefore, need to be estimated or col- 

ected for the specific regions studied and under particular policy 

eriods. In this study, we calibrate these values to reflect the dis- 

ase transmission characteristics for Ile-de-France during the first 

e-confinement period (between the 1st of June to the 31st of Oc- 

ober) and we ensure that the model results are validated for all 

ther regions and under a variety of indicators. The model valida- 

ion is thoroughly discussed in Section (6.1) . 

Note that we consider the same values for the disease tran- 

ition parameters (recovery rate, death rate, disease progression 

ate, etc.) across regions. However, it is possible in other cases that 

hese parameters differ among regions because of significant de- 

ographic or economic differences. Therefore, the model is formu- 

ated to allow the consideration of different values for the disease 

ransmission parameters across regions, if needed. 

Table 2 summarizes information about the population size and 

nformation about the available hospitalization resources in each 

egion (total number of beds in intensive care, reanimation and 

ontinuous care units) ( Ministère des solidarités et de la santé, 

020a ). An important data vector is the initial number of infected 

ndividuals in the population at the start of the planning horizon. 

he number of infected individuals per region is very difficult to 

now at the outbreak of a pandemic or without universal testing 

f all individuals; yet, it is important to initialize these numbers 

or the model state transitions to occur. We assume a relatively low 

umber of initial infections per region in proportion to the popula- 

ion size and note that the only impact of varying these estimates 

s to shift the output along the time axis (high number of initial 

nfections lead to earlier infections or deaths peaks, and low num- 

er of initial infections lead to delayed infections or death peaks 

uffey & Zio, 2020 ) while preserving the exact transition propor- 

ions. This means that any conclusion on the results holds for any 

nitialization of the parameters, with the exception of the obser- 

ation time of occurrence. Finally, Table 3 summarizes the daily 

et movement between regions aggregated across all age segments 

nd different traveling motivations, in particular work and study; 

he data have been obtained from INSEE (2019a,b) . 

The case studies consider daily progression and planning for the 

andemic, in terms of allocation of testing resources under differ- 

nt resource availability levels and intervention start dates. Except 

or the choices related to the model validation illustrated in the 

ext section; the analysis spans a horizon of 210 days (7 months) 

o allow for a planning comparison of a reasonably long period in 

hich the decisions are relevant, and not too long that new infor- 

ation impact the model parameters initialization. 

. Results and analysis 

In this section, we present the model validation and discuss its 

esults with respect to actual data obtained for the selected re- 

ions. We, then, proceed to illustrate and analyze the results of op- 

imal resource allocation obtained by the model under a variety of 
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Table 1 

Disease transition parameters. 

Parameter Description COVID-19 Clinical Progression Estimated 

clinical value 

Source 

1 

μ
Progression rate from exposed to 

symptomatic class 

μ = Incubation period of the disease 

(5 days) 

0.2 ( Lauer et al., 2020; Linton et al., 2020; 

Wassie, Azene, Bantie, Dessie, & 

Aragaw, 2020 ) 

ω A Recovery rate for mild cases 
ω A 

ω A + κ
= Proportion of mild 

infections ( ≈ 77% ) 

0.15 ( Pan et al., 2020; Wu & McGoogan, 

2020 ) 

ω B Recovery rate for severe cases 

(hospitalized) 

ξB 

ω B + ξB 

· κ

ω A + κ
= Case fatality ratio 

( ≈ 2 . 6% ) 

0.08 ( Dong, Du, & Gardner, 2020; Öztoprak 

& Javed, 2020; Russell et al., 2020; 

Wu & McGoogan, 2020 ) 

κ Progression rate from mild to severe 

symptomatic class 

1 

ω A + κ
= Duration of mild symptoms 

( ≈ 5 . 3 days) 

0.038 ( Li et al., 2020; Wölfel et al., 2020 ) 

ξA Death rate for non-hospitalized severe 

cases 

1 

ξA 

= Duration of severe symptoms 

( ≈ 14 days) 

0.07 ( Linton et al., 2020; Zhou et al., 2020 ) 

ξB Death rate for hospitalized severe 

cases 

1 

ω B + ξB 

= Duration of ICU stay ( ≈ 10 

days) 

0.012 ( Ferguson et al., 2020; Zhou et al., 

2020 ) 

σ Transmission rate from susceptible to 

infected 

σ = σA · IA + σB · ISM + σC · ISS 
σA =0 . 21 
σB =0 . 115 
σC =0 . 06 

(Calibrated for the disease progression 

in France. Further discussed in 

Section 6.1 ) 

Table 2 

Population and regional specific data. 

Ile-de-France (IdF) Centre-Val de Loire (CVdL) Grand-Est (GE) 

Population size 12,278,210 2,559,073 5,511,747 

Total number of hospital beds available ( Ministère des 

solidarités et de la santé, 2020a ) 

3951 757 1707 

Estimated hospital occupancy level at the beginning of 

the modeling horizon (approximated based on 

hospitalization data available prior to chosen start date 

( Santé publique France, 2020a )) 

65% 40% 85% 

Estimated number of initial infections (assumed in 

proportion to the population size) 

100 10 15 

Fig. 2. Average daily mobility within departments and regions in France. 

Table 3 

Inter-regional mobility data. 

From To Daily Net Movement (in number of individuals). Source: ( INSEE, 2019a; 2019b ) 

Ile-de-France (IdF) Centre-Val de Loire (CVdL) 3942 

Ile-de-France (IdF) Grand-Est (GE) 400 

Centre-Val de Loire (CVdL) Grand-Est (GE) 225 
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ntervention levels and starting dates. All the solutions presented 

re obtained by solving the NLP model (2) –(24), (25a) –(25e) with 

he standard objective function in Eq. (1) denoted ( O) and, then, 

ith the equity-driven objective Eq. (29) defined in Section 4 , 

nd denoted ( O Equity ). The non-linear model is solved using the 

nterior Point Optimizer (IPOPT) solver ( Wächter & Biegler, 2006 ), 
9 
long with the HSL_MA97 sparse direct solver ( Hogg & Scott, 2011 ), 

hich is capable of handling large-sized instances. To handle the 

umerical complexity and stability of the non-linear model, the 

roblem for each region is first solved independently and, then, 

he obtained solutions are used to warm-start the solver for the 

nterconnected regional problem considering the movement of sus- 
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eptible and infected populations between regions. All solutions 

re reported only after the solver has terminated within the stan- 

ard optimality tolerance on a desktop computer running LINUX 

S with 12 cores, 3.2 GHz CPU and 32 gigabyte memory. All so- 

utions were obtained within approximately 600 seconds of run 

ime. It should be noted, however, that since the model is non- 

inear and non-convex, global optimality is difficult to guarantee 

nd, therefore, the solutions reported are considered to be only lo- 

ally optimal. 

.1. Model validation 

To ensure that the proposed NLP model is adequately capable 

f informing the pandemic preparedness decisions, the model is 

alidated against the current pandemic outbreak data in France to 

ccurately predict the real pandemic progression, given the formu- 

ation and the parameters settings. The model is validated by fixing 

he values of the decision variables for the daily number of tests 

onducted per region ( T S x, j + T A x, j ) and the daily hospitalization

 H x, j ) to the actual data observed for the region during a particular

eriod and, then, solving the model to ensure that the observed 

isease state transition variables, such as the number of daily con- 

rmed cases in each region, the daily cumulative number of deaths 

n each region and the daily number of positivity rate of testing per 

egion, match the actual data. To achieve this, the regional specific 

arameter ( σ ) for the disease transmission between the different 

nfections levels is first calibrated for one region and one output 

in this case Ile-de-France, on the number of confirmed cases) and, 

hen, the validation is performed as described. This means that the 

esults for each region are validated on 3 different outputs (num- 

er of confirmed cases, number of deaths and positivity-rates of 

esting), including the effect of interdependent mobility between 

egions, leading to a validation that is expected to adequately cover 

he modeling choices and parameters settings. 

The choice of the time period selected for validation is criti- 

al, as different intervention policies have been applied to control 

he pandemic outbreak since its beginning. These measures include 

onfinements, social-distancing and travel restrictions to different 

egrees in different periods. To ensure that the validation is consis- 

ent, the period chosen, therefore, should be consistent in the type 

f policies implemented and to the relevance of these policies. In 

his study, we chose to validate the model for the disease transmis- 

ion under normal population movement (not under confinement) 

o ensure its relevance in a preparedness setting where no specific 

olicies have been implemented. Ideally, this should be achieved 

sing data from the onset of the pandemic outbreak, before any in- 

ervention measures have been implemented; however, these data 

re not clearly available for the COVID-19 pandemic, since most 

ountries have implemented a confinement strategy very promptly 

t the onset of the outbreak. 

In France, the first confinement lasted from the 17th of March 

o the 11th of May, and a second confinement started on the 30th 

f October. Therefore, for the model validation, we chose the out- 

reak data for the period from the 1st of June to the 30th of Oc-

ober for the three selected regions Ile-de-France (Idf), Centre-Val 

e Loire (CVdL) and Grand-Est (GE) during the deconfinement pe- 

iod. Graphical representations of the real data used on testing 

 Santé publique France, 2020b ) and hospitalization ( Santé publique 

rance, 2020a ) are shown in Appendix A. 

Fig. 3 provides a visual comparison between the actual pan- 

emic progression data and the model results for the daily num- 

er of confirmed COVID-19 cases ( Fig. 3 a), the daily cumulative 

umber of deaths ( Fig. 3 b) and the daily positivity-rate of testing 

 Fig. 3 c), during the period between June 1st, 2020 and October 30, 

020 in Ile-de-France (Idf), Centre-Val de Loire (CVdL) and Grand- 

st (GE). The visual comparison demonstrates that the proposed 
10 
odel provides a good fit for the daily number of cases and the 

aily level of positivity-rate of testing in all three regions. For the 

aily number of deaths, it is seen that, while overall the model 

esults provide a good-fit, there is a slight underestimation of the 

umber of cases for Ile-de-France and Grand-Est, and an overesti- 

ation for Centre-Val de la Loire in particular for the cumulative 

umber of deaths in the last two months of the studied period 

September and October). It is reasonable to believe that a signif- 

cant part of those misestimations is due to unreliability in data 

eported for the number of deaths, as it has been reported that in 

any instances those cases are reported with notable delays ( Santé

ublique France, 2020a ). It is noted, however, that the difference 

etween the model output and the real data remains relatively low 

the order of magnitude is in a few hundreds at most for the cu- 

ulative number of deaths as opposed to an order of magnitude 

f millions for the other indicators). 

The goodness-of-fit of the model results is confirmed quan- 

itatively by computing the normalized mean absolute deviation 

 n MAD), the normalized root mean squared error ( n RMSE) and the 

xplained Variance between the actual data and the model results, 

s summarized in Table 4 . It is shown that, with the exception of 

he number of deaths for CVdL discussed above, the error values 

 n MAD and n RMSE) are very low and the Explained Variance is 

ignificant, with the lowest value being around 0.8 (maximum 1). 

n addition, it is shown that, for the number of deaths in the CVdL 

egion, the error measures are low for the first three months of the 

ata reported, with the deviation being mostly towards the end, 

hich we note to be possibly, again, due to errors in real data re- 

orting. 

.2. Optimal allocation of testing and control resources 

In this section, the optimal decisions regarding the allocation 

f the available resources to control and minimize the impact of 

he pandemic is investigated. In particular, we focus on the alloca- 

ion of testing resources and implementation of control measures, 

nd their impact on reducing the progression of the disease trans- 

ission within the population, by properly identifying and isolat- 

ng the infected cases. For this, the NLP model proposed is solved 

or different scenarios of total available testing capacity and dif- 

erent intervention starting dates. We consider a mid-term plan- 

ing period of 7 months (210 days) since, in most cases, it is rea- 

onable to assume that the daily allocation decisions will need to 

e updated after a given time, in response to the disease progres- 

ion. For the hospitalization capacities, the allocation are also opti- 

ally obtained in the model; however, we do not consider invest- 

ents in new hospitalization capacities and, instead, consider the 

eal hospitalization capacity known for each region, as previously 

eported in Table 2c. The planning of new hospital investments 

an be straightforwardly investigated using the proposed model, by 

arying the parameter B H , in particular if longer planning periods 

re considered. 

.2.1. Impact of the level of testing and control intervention on the 

andemic progression 

For a limited testing capacity, the NLP model proposed seeks 

o allocate the testing resources optimally among the different re- 

ions to minimize the overall pandemic impact in terms of the 

umber of infected and number of deceased individuals. In this 

ection, we investigate the optimal allocation results for 5 in- 

ervention levels : no testing, 50 0 0, 10 0 0 0, 50,0 0 0 and 10 0,0 0 0

ests/day available to be distributed among all regions. Table 5 

ummarizes the optimal solution for allocating the available test- 

ng resources for each region and for all intervention levels. 

able 5 also summarizes the impact of this optimal allocation and 
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Fig. 3. Model validation: comparison between the actual pandemic data and the model results under the same hospitalization and testing levels. 

Table 4 

Model validation: assessment using different error metrics. 

Region Data Metric 

n MAD n RMSE Explained Variance 

Ile- 

de- 

France 

Infection 0.009 0.013 0.998 

Deaths 0.064 0.077 0.962 

Positivity-Rate 0.052 0.066 0.958 

Centre- 

Val 

de 

Loire 

Infection 0.023 0.044 0.958 

Deaths 0.264 0.455 -2.111 

Deaths (from 01/06 to 30/08) 0.067 0.091 0.923 

Positivity-Rate 0.075 0.107 0.797 

Grand- 

Est 

Infection 0.021 0.035 0.975 

Deaths 0.079 0.094 0.869 

Positivity-Rate 0.064 0.110 0.801 

Table 5 

Optimal allocation of different testing capacities among regions and their impact on the disease transition dynamics. 

Testing Capacity Region Testing capacity allocation Infected Hospitalized Deaths Recovered 

No 

Testing 

Ile-de-France (Idf) 0 8,173,957 52,820 1,779,454 6,352,735 

Centre-Val de Loire (CVdL) 0 1,723,590 9,713 361,077 1,303,597 

Grand-Est (GE) 0 3,676,528 21,184 770,795 2,827,246 

T 

= 

5000/day 

Ile-de-France (Idf) 1,509 7,984,253 47,742 1,633,359 6,254,462 

Centre-Val de Loire (CVdL) 702 1,652,017 7,495 225,145 1,089,777 

Grand-Est (GE) 2,790 542,707 11,111 21,130 222,373 

T 

= 

10,000/day 

Ile-de-France (Idf) 6,436 2,268,596 32,163 112,132 1,039,089 

Centre-Val de Loire (CVdL) 1,225 290,292 5,472 12,092 123,760 

Grand-Est (GE) 2,338 471,932 11,276 18,985 207,509 

T 

= 

50,000/day 

Ile-de-France (Idf) 41,461 319,833 29,077 15,490 204,374 

Centre-Val de Loire (CVdL) 3,309 54,435 4,946 2,171 32,658 

Grand-Est (GE) 5,230 75,140 9,050 2,181 48,000 

T 

= 

100,000/day 

Ile-de-France (Idf) 87,929 199,423 25,253 6783 135,247 

Centre-Val de Loire (CVdL) 6,244 43,279 4,670 1,529 27,288 

Grand-Est (GE) 5,827 72,852 8,979 2,092 46,978 

d

g

f

h

t

a

t

p

f

n

f

G

p
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3

eployment of testing and control measures on the disease pro- 

ression within the population, in terms of total number of in- 

ected individuals, total hospitalizations (limited by the available 

ospital capacities), cumulative deaths and recoveries. 

As seen in Table 5 , significant improvements are observed in 

erms of the number of people infected, hospitalized or deceased 

s the testing and control resources increase, regardless of the par- 

icular distribution among the regions. The “no testing” scenario 
11 
erforms considerably poor in terms of the total number of in- 

ected, hospitalized and deceased individuals. In this scenario, the 

umber of infections in the population reaches more than 8M in- 

ections for IdF, 1.7M infections for CVdL and 3.6M infections for 

E, which represent around 6 6.57%, 67.35% and 6 6.70% of the total 

opulation of IdF, CVdL and GE, respectively. Moreover, the results 

how that, in the absence of testing and control measures, around 

 million individuals in total (1.78M for IdF, 0.36M for CVdL and 
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Fig. 4. Time series for the daily number of total infections for each region and for every scenario of intervention level, over the whole planning horizon. 
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.77M for GE) are expected to die, as seen in Table 5 . This rep-

esents a considerable 14% deaths of the population of each re- 

ion. However, when testing and control interventions are intro- 

uced by increasing the total number of tests per day, the impact 

f the disease reduces considerably. Even by opting for the median 

cenario of 10,0 0 0 tests per day, the percentage of infections re- 

uces to 2.2 M, 290 K and 471 K, which represents 18%, 11% and

% of the population of IdF, CVdL and GE, respectively. Moreover, 

he number of deceased cases reduces to 112 K, 12 K and 18 K, 

epresenting much lower percentages, i.e. 0.9%, 0.47% and 0.34% of 

he population of IdF, CVdL and GE, compared to the average of 

4% deaths observed when no intervention occurs. These improve- 

ents continue as the number of daily tests deployed is increasing, 

nfections reaching levels lower than 2% and deaths reaching levels 

ower than 0.06% when 10 0,0 0 0 total tests per day are optimally

llocated and implemented. 

The number of cases in hospitals reduces as more testing and 

ontrol is introduced, although it maintains a lower improvement 

ate. This is because with limited hospitalization capacity, the max- 

mum number of new daily hospital admissions cannot be sur- 

assed until more places are vacated from patients under treat- 

ent. This results in hospitalization bottlenecks even if the num- 

er of severe cases requiring hospitalization are significantly re- 

uced. 

In terms of how the testing resources are allocated, 

able 5 shows that in all scenarios with non-zero testing ca- 

acity, the majority of the available resources are allocated to the 

ighly populated region IdF. This is reasonable as more commu- 

ity interactions, disease transmission and mobility in and out of 

he region occur as a result of the higher number of population 

nd, therefore, more resources would be needed to effectively 

anage this region. Interestingly, while this logic also holds when 

onsidering the other regions, the results in terms of the resources 

istribution are not directly correlated to the population size. 

ndeed, while CVdL has the lowest population size, for the highest 

ntervention level T = 10 0,0 0 0/day, the optimal solution is to 

llocate more resources to this region compared to the more 

opulous GE. This may be explained due to the impact of mobility 

etween regions, which affects how fast the disease transmits 

ithin a population. 

While the impact of increasing the testing and control inter- 

entions is significant in terms of reducing the total number of in- 

ections within the population, it is also interesting to investigate 

ow the intervention may impact the progression time of the in- 

ections within the population. Fig. 4 illustrates the time series for 

he evolution of the disease infection level in each region and for 

ach testing and control intervention level. It is seen that increas- 

ng the number of tests per day does not only reduce the total 

umber of infections, but it also reduces the peak level of the in- 

ections and delays its occurrence as shown in Fig. 4 . This can be

articularly important if scarce testing and control resources are 

vailable, to extend the time available to prepare other medical in- 
12 
erventions or to decide on a policy intervention in order to mit- 

gate the worst outcomes. Finally, notice that at high testing and 

ontrol levels (above 10,0 0 0 tests per day), the new infection rates 

re very low, with no apparent peak during the studied horizon. 

Similar results for the impact of increasing the testing and con- 

rol measures on delaying the hospitals congestion can be seen in 

ig. 5 . Fig. 5 illustrates the time series for daily hospitals occu- 

ancy in each region and for each intervention level. It is shown 

hat, for all intervention levels, the hospitals eventually become 

ongested and operated at their full capacities (the converging hor- 

zontal lines in the Figures). However, reaching this maximum oc- 

upancy limit can be effectively delayed by a number of months, 

y increasing the testing and control resources and optimally allo- 

ating them between regions. For example, for IdF region, delays 

n reaching hospital capacity limits of 3500 individuals receiving 

reatment at a given day is observed to be attained after around 

.5 months from the start of the pandemic for the scenario of T = 

0,0 0 0 tests/day, compared to being reached only after 2 months 

or the scenario where no testing is introduced. This is even longer 

s the number of testing and control resources allocated increase 

nd is observed for all regions, with hospitalization reaching their 

ull capacity after 6 months for the highest testing intervention 

evels. 

Finally, out of the available daily testing and control resources 

llocated per region, the proposed model is capable to inform 

he optimal allocation of testing between asymptomatic vs symp- 

omatic individuals to ensure the most effective outcomes. These 

esults are shown in Fig. 6 for the average number of individu- 

ls tested from each population (symptomatic vs asymptomatic), 

t each region and for each intervention level considered. The re- 

ults suggest that, for low intervention levels (T = 50 0 0 tests/day 

nd T = 10,0 0 0 tests/day) the model allocates almost all the test- 

ng resources to the symptomatic individuals in all three regions 

IdF, CVdL and GE). However, as the number of available testing 

nd control resources increase, a significant proportion is allocated 

o testing the asymptomatic population. These results are reason- 

ble since, for a limited number of tests, it is more effective to 

ontrol individuals already showing signs and not to waste any 

esting capacity on non-infected individuals, which is highly proba- 

le within the asymptomatic population. Furthermore, Fig. 7 shows 

he daily percentage of asymptomatic vs symptomatic individu- 

ls in the population and compare them against the percentage 

f asymptomatic testing vs symptomatic testing performed. We il- 

ustrate two examples of scenarios of available testing capacities: 

0 0 0 tests per day ( Fig. 7 a) and 10,0 0 0 tests per day ( Fig. 7 b). It

an be observed that, indeed, for the first case with very limited 

esting capacity (50 0 0 tests/day), all tests are performed for symp- 

omatic individuals and none for asymptomatic individuals even if 

hey represent a much higher percentage of the infected popula- 

ion. Similarly, the second case of 10,0 0 0 tests/day allocates 98% of 

esting to symptomatic individuals and 3% to asymptomatic indi- 

iduals at the first few weeks. This is because the total daily test- 



A.F. Abdin, Y.-P. Fang, A. Caunhye et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; November 25, 2021;11:20 ] 

Fig. 5. Time series for daily number of individuals receiving treatment in hospitals, for each region, for every testing and control level, over the whole planning horizon. 

Fig. 6. Comparison between the testing and control resource allocation among asymptomatic individuals and symptomatic individuals, for each region and for each inter- 

vention level. 

Fig. 7. Percentage allocation of daily testing between symptomatic and asymptomatic infected population. 

Fig. 8. Comparison between the cumulative number of infections for each region as a result of different intervention start dates (on day 0, day 30 and on day 60) and for 

each intervention level. 

13 



A.F. Abdin, Y.-P. Fang, A. Caunhye et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; November 25, 2021;11:20 ] 

Fig. 9. Comparison between the cumulative number of deaths (total of all regions) 

as a result of different intervention start dates (on day 0, day 30 and on day 60) 

and for each intervention level. 
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Fig. 11. Comparison between the cumulative number of cases (total of all regions) 

as a result of different intervention start dates (on day 0, day 30 and on day 60). 

The case of intervention level = 50 0 0 tests/day. 
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ng capacity during this period exceeds the daily number of symp- 

omatic individuals (who are endogenously given testing priority) 

nd the remainder is used to test asymptomatic individuals. Start- 

ng around day 70, as the number of symptomatic individuals in- 

rease, 100% of the testing capacity is allocated for testing symp- 

omatic individuals and none for asymptomatic. 

.2.2. Impact of the intervention time of testing and control measures 

n the pandemic progression in the selected regions 

The results obtained in the previous section showed how the 

ptimal allocation of testing and control resources lead to a signif- 

cant reduction in the disease progression, the number of hospi- 

alization and the number of deaths within the population. More- 

ver, different levels of resources availability was investigated and 

nalyzed. Thus far, the investigation performed has assumed that 

he testing and control intervention capacities, if available, are de- 

loyed right at the onset of the disease outbreak. In many cases 

his may not be possible. In this section, we investigate the impact 

f delaying the intervention time of testing and control on the dis- 

ase progression within the population. Three intervention times 

re considered: at the onset of the pandemic outbreak (day 0 sim- 

lar to the results in the previous section), delayed by one month 

nd by two months (day 30 and day 60, respectively). Moreover, 

or the different intervention start dates, we solve for all interven- 

ion levels considered in the previous section (from T = 50 0 0 to T

 10,0 0 0 tests per day). 

Fig. 8 compares the cumulative number of infections as a result 

f different testing and control intervention levels and dates. For 

ach intervention level and intervention date, the results are bro- 

en down for each region besides providing the total values of all 

egions. As expected, the results confirm that delaying the inter- 

ention times, for the same intervention level, results in a higher 

umber of infections per region and in total. Interestingly, for the 

ighest intervention levels (T = 50,0 0 0 and T = 10 0,0 0 0 tests per

ay) delaying the intervention time results in significantly worse 

esults compared to when intervention is performed earlier. Fur- 

hermore, the results confirm that in some cases delaying the in- 
ig. 10. Comparison between the optimal allocation decisions of testing resources among

, day 30 and on day 60) and for each intervention level. 

14 
ervention time would lead to an overall worse outcome than sig- 

ificantly reducing the intervention level but performing it as early 

s possible. This is clear in the comparison between the results of 

 = 50,0 0 0 and T = 10 0,0 0 0 for an intervention on day 60 (total of

.47 million and 3.49 million cases of infection, respectively), com- 

ared to the outcome of T = 10,0 0 0 tests per day for an interven-

ion on day 0 (total of 3.03 million cases of infection). Moreover, 

his analysis holds for the resulting number of deaths, as is illus- 

rated in Fig. 9 , and highlight the usefulness of the proposed model 

n evaluating the trade-off between intervention level and time for 

ffective preparedness strategies. 

Finally, we investigate how the optimal allocation strategy of 

esting and control resources change as a function of the interven- 

ion time. Fig. 10 illustrates the percentage of testing capacity al- 

ocated for each region when different intervention dates are con- 

idered and for all intervention levels. As seen in the Figure, for 

ll intervention levels, as the intervention time is delayed, the re- 

ults suggest that it would be optimal to increase the resources 

llocated to the GE region and reduce it for the other regions. For 

xample, for the low resources scenario (T = 50 0 0/day), the opti- 

al allocation for early intervention (at day 0) is 30% for IdF, 14% 

or CVdL and 56% for GE, whereas the optimal allocation for a de- 

ayed intervention (day 60) is 100% for the GE region and none for 

he others. The trend holds for all intervention levels; however, as 

ore testing capacities are available, the proportion available for 

he other regions remains considerable. 

.3. Impact of prohibiting mobility between regions on optimal 

esource allocation and disease progression 

In this section, we investigate the impact of prohibiting mobil- 

ty between regions on the spread of the disease. Computational 

xperiments indicate that, indeed, prohibiting mobility between 

egions might be another way to limit the spread of the disease, 

n particular at the early stages of the intervention. For clarity, we 

onsider a single intervention level (T = 50 0 0 tests per day) and 

ompare the results for the 3 intervention dates previously consid- 

red. Fig. 11 compares the cumulative number of infections at each 

egion, and their total for the scenario with mobility (Mobility) and 

ith mobility prohibition (Wt/Mobility). 
 regions (in percentage) as a function of different intervention start dates (on day 
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Fig. 12. Comparison between the evolution of the daily number of infections with and without regional mobility, for each region and for every intervention start date. The 

case of intervention level = 50 0 0 tests/day). 

Fig. 13. Comparison between the standard vs the equity-driven solutions for each intervention level. 
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The results suggest that combining both early intervention (day 

) and mobility restriction leads to a significant reduction in the 

umber of cases by around 1.8 million cases as seen in Fig. 11 . The

mpact of mobility restriction is disproportional among the differ- 

nt regions, with regions which have a lower overall net mobility 

CVdL and GE) benefiting more from this measure as opposed to 

he region with the highest net mobility (IdF), for which the mobil- 

ty restriction actually leads to an increase in the local infections. 

ess significant impact for restricting mobility is observed as the 

esting and control intervention dates are delayed. This is clear for 

he insignificant impact on the number of cases when intervention 

s delayed by 2 months (intervention on day 60), even if mobility 

s restricted between regions. 

Furthermore, we can evaluate the impact of restricting mobility 

n the disease progression in terms of the daily number of infec- 

ions at each region. Fig. 12 confirms that for the earliest inter- 

ention date (day 0), restricting mobility results in an earlier rise 

n the number of infections for the IdF region, but with no signifi- 

ant change for the peak infection level. For CVdL and GE, the daily 

umber of infections reduces considerably (flattening the curve), 

s seen in the Figure. As intervention dates are delayed, the infec- 

ion curves maintain their characteristics in terms of peak levels 

nd shape, regardless of whether or not mobility between regions 

s restricted. This means that less flattening of the curves occur in 

hese cases. 

.4. Impact of equity on the testing resources allocation and disease 

rogression among regions 

Thus far, the results shown and analyzed do not consider equity 

n resource allocation, i.e., they seek to minimize the total new in- 

ections and untreated deaths in all regions, without accounting 
15 
or the differences in the vulnerability levels of the regions. As 

entioned earlier, an equity-driven objective considers these dif- 

erences. The results in this section compare the non equity-driven 

esults (for ease of discussion we call them the “standard” results) 

o the equity-driven results obtained by solving the NLP model 

roposed with the equity objective function (29) . 

Fig. 13 compares the standard objective results to the equity- 

ased results, in terms of the objective function value ( Fig. 13 a) 

nd in terms of testing capacity allocated for each region ( Fig. 13 b),

or the different intervention levels. As seen in the Figures, the fol- 

owing observations arise: 

i) For the objective function, the equity-driven solution ( O EQUIT Y ), 

indeed, has a reduced absolute difference in the objective val- 

ues across the regions and for all cases, as seen in Fig. 13 a.

This is noted in the increase of the equity objective value (num- 

ber of cases + number of untreated deaths) for the lowest im- 

pacted regions (CVdL and GE), compared to the standard so- 

lution ( O), and a respective decrease of the objective value for 

the highly impacted region (IdF). However, notice that, although 

the vulnerability levels of all regions are equivalent for all cases 

considered, the equity-driven solution does not have the same 

proportional impact on changing the objective function values 

for all the intervention levels. Indeed, the difference between 

the O and O EQUIT Y results is more pronounced for the lowest 

intervention levels (T = 50 0 0/days and T = 10,0 0 0/days) com- 

pared to the higher intervention levels (T = 50,0 0 0/day and T = 

10 0,0 0 0/day) in which cases the solutions are almost identical. 

This is because, by taking into account the vulnerability factor, 

the equity-driven solution seeks to minimize the absolute dif- 

ference between regions, which is much higher for the former 

cases (e.g. the difference in the O value between IdF and GE is 
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Fig. 14. Comparison between the inequity level (GINI index score) between the standard solution and the equity-driven solution for the different intervention levels. 
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around 7.6 million cases for T = 50 0 0/day) than for the latter 

ones (e.g. this difference is equal to just 130 thousand cases for 

T = 10 0,0 0 0 per day). 

ii) To understand how the equitable solution is achieved by the 

optimal decisions, Fig. 13 b summarizes the allocation decisions 

of testing capacities for each region. The results show that, in 

order to achieve the equitable objective, the allocation of the 

testing capacities T C EQUIT Y shift from the lower impacted re- 

gions (CVdL and GE) to the higher impacted region (IdF) com- 

pared to the standard solution T C. With lower testing capac- 

ity, the proportion of tests allocated for the IdF region is higher 

than in cases where testing capacities are high, as previously 

explained. Furthermore, the effect of the equity-driven solution 

on the number of cases hospitalized and deceased follows the 

same trend as that observed for the objective value. These re- 

sults are illustrated in Appendix C. 

Finally, the policymaker may evaluate the inequity level result- 

ng from each allocation strategy by calculating the GINI score pre- 

ented in Eq. (2c). Fig. 14 compares the inequity levels obtained by 

olving the allocation problem with the standard objective com- 

ared to the equity-driven objective. First, notice how, even for the 

tandard solution, the inequity decreases as more resources are 

vailable. The inequity level starts at a level of 0.41 for the case 

f T = 50 0 0/day (1 being absolute inequity and 0 being absolute 

quity) and reduces constantly to an inequity level of 0.31 for the 

ase of T = 10 0,0 0 0/day. Moreover, as expected, for all cases, the

nequity level is lower for the solutions explicitly driven by the eq- 

itable objective, and remaining around a level of 0.27. Finally, no- 

ice that an inequity level remains in these solutions, since they 

till consider the effectiveness of reducing the global numbers of 

ew infections and untreated deaths as a relevant objective, even 

f it maintains some level of inequity. 

. Conclusions 

This paper presented a novel non-linear programming (NLP) 

pidemic compartmental model for allocating limited testing and 

ontrol resources to control the spread of an infectious disease. 

ur NLP framework contributes to the current epidemiological op- 

rational research literature by: (1) proposing a novel formula- 

ion for testing and control allocation decisions for both symp- 

omatic and asymptomatic individuals in the population, and tak- 

ng into account the positivity-rate of testing, (2) extending the 

andemic compartmental model to consider different levels of in- 

ections severity and asymptomatic transmission of the disease, (3) 

eveloping a method to evaluate the vulnerability levels of the dif- 

erent impacted communities and a re-formulation of the objective 

unction to consider equity in the allocation of testing and control 

esources based on the GINI index, (4) validating the possibility to 

olve the model for a wide variety of scenarios with explicit con- 

ideration of the non-linearity and showing the superiority of the 

esults obtained by validation against real data. 
16 
We illustrate the usefulness of the proposed modeling frame- 

ork for informing policymakers about the optimal allocation of 

imited testing and control capacities, and their impact on the pan- 

emic progression. In particular, we consider a case study for the 

OVID-19 pandemic outbreak in France and explore a wide range 

f possible intervention times and levels. 

Future research could address some of the limitations of this 

ork, in particular with respect to the treatment of the inherent 

ncertainties in the disease transition parameters of the model, 

uch as the rates of hospitalizations, recovery, severity of the dis- 

ase or deaths, and their impact on the allocation decisions. Fur- 

hermore, future work may consider more details about hospitals. 

or example, people who need ward care, people who need to stay 

n the ICUs, and people who need ventilators in the ICU. This can 

llow the model to, also, directly consider the capacity allocation 

roblem faced by the health-care system. Another interesting ex- 

ension may consider the ability of the recovered population to be- 

ome once again susceptible to the disease, which has been shown 

o be a possibility with the COVID-19 pandemic. Moreover, while 

he proposed model and case study were readily solvable with 

vailable commercial solvers, further extensions of the model may 

equire the development of tailored solution algorithms, in particu- 

ar if the number of variables and constraints increase significantly. 

inally, such kind of modeling framework should be adopted by 

olicymakers to inform decisions on actions and precautions for 

esilience to future pandemic outbreaks. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2021.10.062. 
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